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Coulomb effects in the interaction of a charged particle
with a two-fragment quantum system

V A Bilyk t, V L Shablov, P S Krstt} and D R Schultz

1 Obninsk Institute of Nuclear Power Engineering, Obninsk, Russia
1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA

Received 29 September 1997, in final form 30 March 1998

Abstract. A direct method to derive the expression for the polarization potential between a
charged particle and a two-fragment quantum system is developed. This method is based on
the asymptotic properties of the two-body Coulomb Green function. The explicit form of the
polarization potential constant is obtained for low-energy deuteron—nucleus scattering and for
ion—hydrogen scattering. The properties of the polarization potential at high collision energies
are applied to obtain an expression for the ion—atom scattering total cross section.

1. Introduction

The investigation of Coulomb scattering involving many-particle quantum systems is of great
importance in atomic, molecular, and nuclear physics. In particular, the investigation of the
behaviour of the two-fragment system in an external Coulomb field is an effective method
to study its internal structure. In the general case, the particles, produced in the reaction
simultaneously with the system under consideration, act as the field sources. For stable
guantum systems the potential corresponding to its interaction with an external Coulomb
point-like source can be represented as a sum of the pure Coulomb term, an additional
multipole-type potential, and the polarization potential. The properties of the polarization
interaction have been considered extensively in the past (see, for example [1-4]).

In this paper we consider the problem of derivation of the polarization potential on
the basis of rigorous many-particle scattering theory. We formulate a direct method for
obtaining the expression for this potential for Coulomb scattering of a charged particle by
a two-fragment bound system. Our approach is based on the asymptotic properties of the
two-body Coulomb Green function and the results obtained taking account of the effects of
non-zero collision energy, thus exceeding the applicability of the adiabatic approximation
[1,2]. Furthermore, the method developed can be generalized for the description of the
external force field influence on the observable properties of unstable quantum systems in
nuclear and atomic physics [5-8].

The foundations of the theory are presented in section 2, while applications to both low-
and high-energy scattering in various systems is shown in section 3. The atomic system of
units is used throughout the text except where noted.
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2. Theory

The Hamiltonian that characterizes the three-body problem under investigation can be
represented as [9]

H=H,+ V" (1)

where the indext denotes the two-fragment bound system &ifds the Coulomb potential
of the third particle with the fragments which form the pair The channel Hamiltonian
H, is given by the expression

H, = I:Ioz + hOOl (2)

where H, is the Hamiltonian of internal motion in the subsystemand /g, is the free
Hamiltonian of relative motion ofr and the third particle. The operatéf can then be
represented as

H = H, + (hoy + V*) + W* = H, + h, + W* ()

whereV¢ is the Coulomb potential between the pai{considered here as a point particle)
and the third particlek!, = ho, + V2 is the Hamiltonian of the subsystemin the field

of the third particle andv* = V¢ — V¥ is the potential responsible for the polarization
effects.

We define an operatd?P as a projection operator onto the bound states of the internal
motion Hamiltonian,, with the energy—«?2 and the total spiry (i.e. P =Y, [#jm)(Piml)-
Then the optical potential (e.g. the effective interaction potential) for thexptiird particle
follows in the form [9-11]

Upim (Z2) = ($jm| W + WER(Z)W|¢j)
= (Qjm| W — 8a(Z — h)WT 2 j) 4

where Z = E +i0 is the total energy of the three-body system. In the derivation of
formula (4) we have used the convolution of the Green function for the subsystem and the
Coulomb Green functiogé (2) [12]

6= [ Sow+0BgE-0  (mz-0) (5)
with the following designations

Go(2)=(Z2—H, —h{)™" (6)

g(2) = (Z—h)~ (7)

8(2)=(Z-H,)™* (®)

and where the symbab denotes the tensor product.
_Using the spectral theorem for the resolvent opergfdZ) we express the operator
G,(2) in the form

Gu(2) = gu(Z — ). )
Since the operatoR(Z) in (4) satisfies the equation
R(Z2) = g4(Z — hg) + §u(Z — he)W*R(2) (10)

with g,(2) = g, (2)(I —P), R(Z) is the resolvent of the HamiltoniaH in the orthogonal
subspace, defined by the projection operadoe I — P [9-11]

R(2)=(2Q-QHQ)'Q. (11)
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The solution of the integral equation (10) may be obtained by iterations, thus yielding the
following expression for the effective potential

Umm’(z) = <¢jm|Wa|¢jm’> + <¢jm|Wa Aoc(zz - h;)Wa|¢jm’> + -
= U (D). (12)

The first termU,fiZl,(Z) in equation (12) corresponds to the effective potential in the Born
approximation. In the coordinate representation this term is local and diverges exponentially
when p — 0 (the total angular momentum of the pairequals 0) or ag 2 (the total pair

a angular momentum differs from 0) [4-13], whepeis the distance between the charge
and the centre-of-mass of the two-fragment system. Addition of the pure CoulomtVferm

to U'Y (Z) gives the static part of the interaction potential

V= VS 4+ UL, = (i VE i) (13)

The decomposition equation (13) is the starting point of Veselova’s regularization procedure
in the integral equations for three charged particles [13, 14].

The second term in equation (12) corresponds to the polarization potential and has the
form

(PUDm W8 (Z — h)W* |} P (14)

Using the convolution form of, (Z — h$) in equation (5) we conclude that the asymptotic
behaviour(p|U,f11n)l,|p/) is defined by the asymptotic properties of the two-body Coulomb
Green functiong.(2).

To describe these asymptotic properties we use the partial-wave expansion of the
Coulomb Green function [10]

21 .
(plgc(2)1p) = oo D Yu@Yi (e p. P, 2) (15)
(78
wherek = (2.2)"/2, i being the two-body reduced mags= 42 and
. T+1+in 1
Lp, P 2) =i(=D) (4k%pp) Tt ————— explik "N =—
g (p. P, Z) =i(=D)"(4k*pp") 2D of (p+p))2k
x®U+1+in,20 + 2, —2ikp )V +1+in, 20 + 2, —2ikp-). (16)

As usual, p. and p. are the smaller and larger of and p’, respectively, and; is the
Coulomb parameter = %, where Q; and Q, are the charges of the particles. In the
asymptotic regionkp| > 1, |kp'| > 1 the partial Green functiog’(p, p’, Z) contains a
contribution of the form

1/p-\" .
_E <_> equk(p> = p))- (17)
We note that such a contribution, containing the exponentiep+ o')), introduces terms

into (plU(z),|p’) of an asymptoticaly higher order than those in equation (17) and thus this

mm

contribution can be omitted. Therefore,

1 (p\"
(P|gc(Z)|P/> — %w <IZ_) eXFXIk(p> - ;0<))8(Qp - Qp’) (18)

when|ko| > 1, [ko'| > 1 and

(pIgc(2)f) — %0/0 dx x 17 expliko|1 — x|) f (xp, Q) (19)
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if ko] > 1. f(p) is a smooth function, significantly different from zero only at large
distancesp. Using standard asymptotic methods, we find the asymptotic expression for
equation (19):

2
(plsc(2)1f) — 5 F(P) (20)
which is valid whenlkp| > 1. Equation (20) implies that

2 1
(plgc(2)1p)) — k—’;‘8<p —p) = 38— ) (21)

when bothlkp| > 1 and|kp’| > 1.

The result obtained opens the possibility to calculate the matrix elements of the
polarization potentiak f|Vya(2)|f') with functions f(p) and f'(p) smoothly vanishing
at small distances. The kernel ¢4 (2) is obtained in this case by substitution of
equation (21) into equation (14). In the dipole approximationWtt we find that

1 © d ~
PlU 1) = — / —= / dr / dr' rr' C2y* (r) costr, p)(p — 1)
P2 ) oo —2im
x(7|8q (€ +10)|r') cosr’, PO (p" — r') Y (r') (plgs(Z — €)p'). (22)
The terms containing the step functigh@ — p) or6(r’'—p’) (r being the relative coordinate
in the paire) are exponentially small and we replace the sharp cut{gff-r) by the smooth
one(1+exp((r —p)/a))~t. Assuming that the HamiltoniaH, is analytical under complex

scaling [13, 16, 17] (and thus the functiah, (r) = (1 + exp((r — p)/a)) ‘¢, (r) is an
analytical vector [16]), we can rewrite equation (22) as

1 * d . ~ .
(plUL1P) = ——C? / < / dr / dr' rr'g; (& r) cosr, p)(r|gh(e +i0)|r)
mm ,02,0 2 . — i
x cosr’, ) (r')(plgg(Z — €)lp') (23)
where we have used the second Balslev—Combes theorem [15, 16]
(W, |§ (€ +10)[ W) = (W, (0)]8E (¢ +i0)| W, (8)) (24)

and6 is a complex scaling parameter, not to be confused with the step furtation The

constantC in equations (22) and (23) is defined by the expression
C = st- (25)
mi + my

Inserting the spectral representation for #€ (e + i0) into equation (23) and assuming
for simplicity that the HamiltoniarQ H,, @ does not have a discrete spectrum, we reduce
equation (23) to the form

2
/ dgo (VS (@) (¥ ()] x (plgc (Z - e-zaz%) 15)

+ D @) (0] x (plge(Z — 1)lp) (26)

where quawg(q»(l/fg*(qan is the spectral projection operator onto the continuous
spectrum ofQ H, Q and whergy;(0)) is the resonant wavefunction for the pairi.e.

He | (0)) = 2ilyi (6)). (27)

2 1/2
oue (2 — e e
(2 (2-275))

Since

k%] = #0 (28)
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where Z # 0 for arbitraryg,(Imé > 0) and whereu, = m% is the reduced mass of

the paira plus the third particle, the result in equation (21) can be applied in equation (23).
Using the limiting proceduré — 0 in the resulting expression, we find

c? .
(plUL|p)) = 8(p— p’)F / dr / dr’ ¥, (r)ré(p —r)

x COS(r, p) (182 (2)|7)r'0(p" — r") cosr’, p) i (). (29)
If we neglect the exponentially small corrections again, the final expression for the
polarization potential follows in the form

, S(p—p
IV (2)1p) = (plU2, o) = —% (30)
where
y = —C? / dr / dr’ Y (1)1 COST, ) (|2 (2|} COSIT', p/) Y (7). (31)

The result in equation (30) is valid for &l £ 0 andZ ¢ o,(Ho,+ V,,) With the exception of
the eigenvalue-«2 under consideration. Generally, for the negative energies of the system
(particularly at the energies between the ground and the first excited state) the expressions in
equation (30) coincide with the well known expression for the polarization potential in the
adiabatic approximation. The approach developed here allows the validity of equation (30)
to be extended for arbitrary energids, The exceptions are the threshold energies of the
Hamiltonian QH, Q and the region of relative distancesfor which (2415))%%p > 1,
where$ is the distance fronE to the nearest threshold.

As mentioned above, the result obtained relates to the properties of the kernel
(pIVpal(2)|p'). If the momentap and p’ obey the inequalityp, p’ < [V2uqE| it is
easy to see that this result extends to the momentum space matrix elépightg 2)(p’)
which describe the properties of the long-range part of the ope&iﬁﬁ)r(Z).

3. Applications

3.1. Deuteron—nucleus scattering

As a first example we derive the expression for the polarization potential corresponding to the
low-energy scattering of the deuteron by the nucleus with ch@ge Q3. Assuming that

the nucleon—nucleon forces are described by a separable potential with the form factor in the
Yukawa form (Yamaguchi potential) and using for simplicity the zero-range approximation
we obtain

, s(p—p)
PVl D)lp) = - L2 (32)
PO
where
0% My 5 _E5+i0
==V oR(L35 : 33
14 64 B 2 1( > ] (33)

E¢ is the energy of the system (in the centre-of-mass)= —A’Z—ZN is the bound energy of
the deuteron of reduced maafy and,F; is the hypergeometric function of the form

5 4116 3 3 1
Fil125,;)=2"|1=-)%_14+Z,_Z,2_ —,3|, 34
2 1( 5 ,Z) o [( 2) +2z AT (34)

In the range of low energies, which is our current interest, one may asfijrae0, and
the result obtained coincides with that obtained in [3].
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3.2. lon—-hydrogen scattering

As a second example we calculate the polarization potential constant for the scattering of
an ion of chargeQ = Q3 by the hydrogen atom. Using the dipole approximation for the
potential W (p) we obtain

y=-30% (35)
where

o0 o0 , ,
= —/ dr/ dr’ e FU+y2, ngzl(r, r', 2) (36)
0 0

and g = 1 in case of the hydrogen ion.
To calculate the integral in equation (36) we use the following representation for the
two-body Coulomb Green function [17]

o) 1
m—e—! 1 o .
: " Z P / A+ (_2ia ) (—2iar’)
g(r, 7, 2) = 2;2; ) e e (2 (=2gr)
x L2 (=2igr)L2Hr [ (=2igr) (37)

whereL!(x) is the Laguerre polynomial ang= (22)Y/2. Thus

d?A
I = 2(—2ig)® ( ) (38)
dp1dp> p1=p2=Pp—iq
where
3 ! n 39
A= A . _Jn n
nzn+2+l P 1P (g (39)
and
o0 3 [ n
o = [ aerridcaion = TN (40)
0 nl  p?
with
o
(x - H—'q) . (41)
p
Using the formula
> 1 1
Z x"=—s2F(Lv;v+1x) (42)
—n +v v
we obtain
1 I
(1,2 3 43
2+”7P1 gd.x3x 2F1(1,2+1n; 3+in; x) (43)
wherex = x3xp. This yields
1
2F1(4 2+4in; 34 n; x). (44)

2+In
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Figure 1. The dependence on energy of the hydrogen atom polarization constant in atomic
units.

Substituting this expression fot into equation (38) we obtain the ion-on-hydrogen atom
polarization potential constant

2'ig®0% [ 16 . .
= Ziin [ﬁzF1(2+ln,4;3+ln;X)
4 , 32 2+in . .
+<Ec —p—lz(l?—c)c) 3 2F1(3+in,5 4+ in; x)
1 2 2202+ i) R
+ F(P—C) ¢ Tszl(Af-i'”L 6,54 1in; x) (45)

with n = —i, p=1—ig,x= %, c = —2iq.

Sinceq = (2E¢ — 1)¥/2 where E¢ is the relative collision energy, the low-energy limit
yieldsg =i andx = 0 and hencer = %Qz, what is to be expected [2] from the known
polarizability of atomic hydrogen. To illustrate the energy dependence of the polarization
constant when the collision energy rises from zero we calcylaia the energy range
0 < E¢ < 3 eV. Our result is shown in figure 1 showing a relative change of about
30%.

We also derive the representation for the hydrogen atom—ion polarization potential at

asymptoticaly large distances,>> 1, which can be written in the form

Vi) =-Y % (46)
(=1

where

8 . d?A,
_ (—2ig)2+1 2( ) 47
Ve= iy M ¢ dpidp2/ = pp=1-ig “n
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and

e+ 1 . .
= - Fi(26 +2,04+1+in £+ 2+ in; . (48
L1t (pipo)?i? 2 120+ 2,041+ in; £+ 24 in; x1x2). (48)

We note that this result does not coincide with the well known expansion of polarization
potential in [1]. The latter concerns high energies while our result is derived for low energies
and is valid in the limit thek — O.

Ay

3.3. lon—atom and atom-atom scattering

As a third example we investigate the properties of the polarization potential at high energy
for ion—arbitrary atom and atom—-atom scattering. Using the expression in equation (12) for
the effective ion—atom or atom—atom potential

Vet = Vst + Vpol (49)

whereVy is defined by equation (13) and the high-energy approximation for the polarization
potential

Vool = ($al VEGa V| h0) (50)

we obtain the representation of the elastic amplitude in the two-potential approximation
form [9]:

tel(P, Po) = tst(P, o) + (P Vpol DY) (51)

The amplituders(p, po) in equation (51) corresponds to the scattering on the pote¥itial
while the stategp™®) are the distorted waves for this potential. At reasonably high energies
we can use the eikonal approximation, which yields

(plp™®) = (2n)‘3/zexp<ipp+ %’ dz V(b z’)) (52)
Foo
and
ts(p. Po) = ts(q) = —— L — / dbé‘ﬂ’<1— exp(’?‘—“ / dz V(b z))) (53)
(27)3 1 ip J oo

whereq = po — p andb are the momentum transfer and impact parameter, respectively.

Using the optical theorem and expanding the total reaction cross section as a power
series in the paramete};r: ’;—g we find that the leading term of this power series has the
form

2 o0 2 2 3 a
oot = % f db < / dr / dz ¢ () PV (r, b)) - (’;%lm (PolVoalpo).  (54)

0

In particular, the contribution of the Born terms of order higher than the second one are
neglected irvg(q), leading to equation (54).

Next, the spectral representation of the Green funclignZ) is used to calculate the
contribution of the polarization potential into equation (54)

Go(Z) = I _Naid{guil (55)
z

p2
i#0 ™

_gvti_z
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where{|g,;)} is the complete set of target atom stateg, is the energy of théth state,
Va0 = ¢ aNd ggg = —/co"f, as well as the eikonal approximation for the matrix elements

(P|(E 410 — g4 — 2‘;2 )~tp'). As a result we find that

panp 1, Nk
Otot = —Zj — 2 ()i (7)o (), (')
po pPi

x/db/ dze*mfzva(b,z;r).fdbf dz e 27V (b, z; 1) (56)

where p; = /2u,(E — &4;) and A; = po — p;.
Particularly in the case of ion—atom scattering, the potentfahas the form

N
V“(r,p):—Qe2<Z = —3> (57)

—lri—pl »p

whereN is the number of electrons in the target atom. By using the integral representation
of the McDonald functionKp(z)

00 e—ixz
2K0(Z) = . dx —m (58)

and neglecting the difference betwegg and p; in the denominators of equation (56) we
obtain

2
o= X0 [ar [[ar oz s,y [ db (NG~ NKo(A)
0

N N
x <Z Ko(Ailb — b)) + Y Ko(Ailb— b2|)>

k=1

1
N N
+ZZKO(Ai|b_bi|)K0(Ai|b_b;<|)>~ (59)

j=1 k=1

The limit A — 0 is implied in equation (59). To perform integration over the impact
parameteib we use the relations

/ db K2(Ab) = % f db Ko(Ab)Ko(Alb — by|) = %blKl(Abl). (60)
From properties of the functiok’;(z) of a small argument
Ko~ T4 ini - i@+ v -0
1(z Stz =3 b4
where (z) is the ¢ -function, we obtain

4 2
Otot = #(a In2v + b) (61)
v
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where the constants andb are defined by relations:
a=N / db p(b)b?> — N(N — 1) / dblfdbg £ (b1, bo)b1by
b=IN*(Y(2 +¥(D) / db p(b)b* — N / db p(b)b*Inb
) (62)
3NV = D) [ db [ dba £ (bu.b)lbs  bofin s~ b

+N2I I 6a; / dbs / b pos (b) g (b2) b1 — bal?
i£0

and
pbn) = [ [dra.. [ dryigurscmP
f (b1, b2) =/ le/ dZZ/dT'S-u/dT'N e (P, ..., T (63)
poi (b1) = / le/de .. / dry ¢ (re, ..., *N)@i(T1, ..., TN).
The constant: determines the dipole momentum of the target atom
N 2
a= <¢a|(2 bj) |6a) = (bald?|60) (64)
j=1

whered is the target dipole momentum projection onto the plane perpendicular to the
vector po. The constanb accounts for the dipole and quadrupole transitions in the target
atom.

In the special case of the hydrogen atom these yield

8 3 1
Otot = >z (In 2v + 2 +1In E) (65)
where
1
|nﬁ = I S; |n8ai
i#0 (66)

5 = / dbs / b por (br) i (b2) [y — bal

It is interesting to note that the result in equation (61) can be also obtained by using the
following approximation for the Green functiati, (Z) in equation (55) [1]

~2
Go(Z) = (z-g - 2””

o

-1
) (I = |pa) (Pal) (67)

where the valué is the average excitation energy of the atom. This yields

47 Q?
Otot = — 5
v

l /
InXer) (68)
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where A = pg — \/pg—zua(/c2+§), the valuea has the same meaning as in the
formula (61) andb’ is obtained in the form

b = NZ/db,o(b)bz (3 + (@) —In 9) - }N(N — 1)/db1
2 2) 2
x /olb2 £ (b1, b) <% + (1) —In 'bl—;bz") . (69)

This result foroy is a justification of the approximation for the Green function in
equation (67) as well as a direct method for calculation of the average excitation énergy

3.4. Alternate derivation of scattering wavefunction
As our final example, we derive an expression for the scattering wavefuriétjoty which
satisfies boundary conditions as given by the Lippmann—Schwinger equation

(WD) = gupo) + Gu(E +i0)VE WD), (70)
Approximation of the channel Green function in the form equation (67) yields for the
solution of equation (70)

(rpl ¥ (po)) = (27)" Y€y (1) F (r, ). (72)
Therefore the functiorF' (r, p) satisfies the integral equation

o g poz=2)+iplp—p|

Fer.pp=1-—- f dp) —————V*(r, p)F(r, p) (72)
7T lp—pl

with p = po— A = \/po — 2uq (k2 + &). The z-axis is chosen parallel to the vectps.

The kernel of equation (72) contains the large parametso that we can apply asymptotic

methods to construct the solution of this equation. Application of the stationary phase

method results in the equation

0 . , ) ,
F(Z) — 1 + 'li/L_a dZ/ e'PO(Z —z)+iplz—z |Va(z/)F(Z/) (73)
P J-
where, for simplicity, we omit dependence on all variables with the exception of the
coordinate. Neglecting the terms of orders higher tpah, this reduces to the expression

Z H !
F(Z) — 1 + % dz/ eflA(Z*Z)VO((Z/)F(Z/) (74)
which can be transformed into
F(Z) =1+ /i’L_th /\ dZ/ e—iA(z—z’) Va(Z/)e*i‘T‘jf;dz”V“(Z”)‘ (75)
—00

This yields the elastic scattering amplitude in the form

1
(2m)3

+H—ai/‘dr|¢a(r)|2/db/ dz/” dz’V¥(r; b, 2)V(r; b, 2)
Ip (27'[)3 -0 —o0

A=l L Vb 76)

tel(p, Po) = (PPe | VWP (D)) =

/ dp e / dr e (r) 2V (. p)

At high energy, the representation given by equation (76) leads to the same result for
the reaction total cross section as that derived from the polarization potential approach.
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Therefore the representation in equations (71) and (75) of the scattering wavefunction
properly takes into account the effect of the polarization potential in distinction to the
traditional eikonal approximation, which can be obtained from (75) by neglecting the
value A. This fact explains why the elastic amplitude written within the framework of
the traditional eikonal approximation diverges in the forward direction [18].
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