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Abstract. A direct method to derive the expression for the polarization potential between a
charged particle and a two-fragment quantum system is developed. This method is based on
the asymptotic properties of the two-body Coulomb Green function. The explicit form of the
polarization potential constant is obtained for low-energy deuteron–nucleus scattering and for
ion–hydrogen scattering. The properties of the polarization potential at high collision energies
are applied to obtain an expression for the ion–atom scattering total cross section.

1. Introduction

The investigation of Coulomb scattering involving many-particle quantum systems is of great
importance in atomic, molecular, and nuclear physics. In particular, the investigation of the
behaviour of the two-fragment system in an external Coulomb field is an effective method
to study its internal structure. In the general case, the particles, produced in the reaction
simultaneously with the system under consideration, act as the field sources. For stable
quantum systems the potential corresponding to its interaction with an external Coulomb
point-like source can be represented as a sum of the pure Coulomb term, an additional
multipole-type potential, and the polarization potential. The properties of the polarization
interaction have been considered extensively in the past (see, for example [1–4]).

In this paper we consider the problem of derivation of the polarization potential on
the basis of rigorous many-particle scattering theory. We formulate a direct method for
obtaining the expression for this potential for Coulomb scattering of a charged particle by
a two-fragment bound system. Our approach is based on the asymptotic properties of the
two-body Coulomb Green function and the results obtained taking account of the effects of
non-zero collision energy, thus exceeding the applicability of the adiabatic approximation
[1, 2]. Furthermore, the method developed can be generalized for the description of the
external force field influence on the observable properties of unstable quantum systems in
nuclear and atomic physics [5–8].

The foundations of the theory are presented in section 2, while applications to both low-
and high-energy scattering in various systems is shown in section 3. The atomic system of
units is used throughout the text except where noted.

0305-4470/98/204743+12$19.50c© 1998 IOP Publishing Ltd 4743
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2. Theory

The Hamiltonian that characterizes the three-body problem under investigation can be
represented as [9]

H = Hα + V α (1)

where the indexα denotes the two-fragment bound system andV α is the Coulomb potential
of the third particle with the fragments which form the pairα. The channel Hamiltonian
Hα is given by the expression

Hα = H̄α + h0α (2)

where H̄α is the Hamiltonian of internal motion in the subsystemα and h0α is the free
Hamiltonian of relative motion ofα and the third particle. The operatorH can then be
represented as

H = H̄α + (h0α + V αc )+Wα = H̄α + hcα +Wα (3)

whereV α
c is the Coulomb potential between the pairα (considered here as a point particle)

and the third particle,hcα = h0α + V αc is the Hamiltonian of the subsystemα in the field
of the third particle andWα = V α − V αc is the potential responsible for the polarization
effects.

We define an operatorP as a projection operator onto the bound states of the internal
motion HamiltonianH̄α with the energy−κ2 and the total spinj (i.e.P =∑m |φjm〉〈φjm|).
Then the optical potential (e.g. the effective interaction potential) for the pairα-third particle
follows in the form [9–11]

Umm′(Z) = 〈φjm|Wα +WαR(Z)Wα|φjm′ 〉
= 〈φjm|Wα[I − ĝα(Z − hcα)Wα]−1|φjm′ 〉 (4)

whereZ = E + i0 is the total energy of the three-body system. In the derivation of
formula (4) we have used the convolution of the Green function for the subsystem and the
Coulomb Green functiongcα(Z) [12]

Ḡα(Z) =
∫ ∞
−∞

dε

−2iπ
gα(ε + i0)⊗ gcα(Z − ε) (ImZ > 0) (5)

with the following designations

Ḡα(Z) = (Z − H̄α − hcα)−1 (6)

gcα(Z) = (Z − hcα)−1 (7)

gα(Z) = (Z − H̄α)−1 (8)

and where the symbol⊗ denotes the tensor product.
Using the spectral theorem for the resolvent operatorgcα(Z) we express the operator

Ḡα(Z) in the form

Ḡα(Z) = gα(Z − hcα). (9)

Since the operatorR(Z) in (4) satisfies the equation

R(Z) = ĝα(Z − hcα)+ ĝα(Z − hcα)WαR(Z) (10)

with ĝα(Z) = gα(Z)(I −P), R(Z) is the resolvent of the HamiltonianH in the orthogonal
subspace, defined by the projection operatorQ = I − P [9–11]

R(Z) = (ZQ−QHQ)−1Q. (11)
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The solution of the integral equation (10) may be obtained by iterations, thus yielding the
following expression for the effective potential

Umm′(Z) = 〈φjm|Wα|φjm′ 〉 + 〈φjm|Wαĝα(Z − hcα)Wα|φjm′ 〉 + · · ·
=
∑
n

U
(n)
mm′(Z). (12)

The first termU(1)
mm′(Z) in equation (12) corresponds to the effective potential in the Born

approximation. In the coordinate representation this term is local and diverges exponentially
whenρ → 0 (the total angular momentum of the pairα equals 0) or asρ−3 (the total pair
α angular momentum differs from 0) [4–13], whereρ is the distance between the charge
and the centre-of-mass of the two-fragment system. Addition of the pure Coulomb termV cα
to U(1)

mm′(Z) gives the static part of the interaction potential

V st = V cα δmm′ + U(1)
mm′ = 〈φjm|V α|φjm′ 〉. (13)

The decomposition equation (13) is the starting point of Veselova’s regularization procedure
in the integral equations for three charged particles [13, 14].

The second term in equation (12) corresponds to the polarization potential and has the
form

〈ρ|〈φjm|Wαĝα(Z − hcα)Wα|φjm′ 〉|ρ′〉. (14)

Using the convolution form of̂gα(Z − hcα) in equation (5) we conclude that the asymptotic
behaviour〈ρ|U(1)

mm′ |ρ′〉 is defined by the asymptotic properties of the two-body Coulomb
Green functiongc(Z).

To describe these asymptotic properties we use the partial-wave expansion of the
Coulomb Green function [10]

〈ρ|gc(Z)|ρ′〉 = 2µ

ρρ ′
∑
`λ

Y`λ(ρ)Y
∗
`λ(ρ

′)g`c(ρ,ρ
′,Z) (15)

wherek = (2µZ)1/2, µ being the two-body reduced mass,µ = m1m2
m1+m2

and

g`c(ρ,ρ
′,Z) = i(−1)`(4k2ρρ ′)`+10(`+ 1+ iη)

(2`+ 1)!
exp

(
ik(ρ + ρ ′)) 1

2k
×8(`+ 1+ iη, 2`+ 2,−2ikρ<)9(`+ 1+ iη, 2`+ 2,−2ikρ>). (16)

As usual,ρ< and ρ> are the smaller and larger ofρ and ρ ′, respectively, andη is the
Coulomb parameterη = Q1Q2µ

k
, whereQ1 andQ2 are the charges of the particles. In the

asymptotic region|kρ| � 1, |kρ ′| � 1 the partial Green functiong`c(ρ,ρ
′,Z) contains a

contribution of the form

−1

2

(
ρ<

ρ>

)iη

exp(ik(ρ> − ρ<)). (17)

We note that such a contribution, containing the exponent exp(ik(ρ+ρ ′)), introduces terms
into 〈ρ|U(2)

mm′ |ρ′〉 of an asymptoticaly higher order than those in equation (17) and thus this
contribution can be omitted. Therefore,

〈ρ|gc(Z)|ρ′〉 7−→ µ

ik

1

ρρ ′

(
ρ<

ρ>

)iη

exp(ik(ρ> − ρ<))δ(�ρ −�ρ′) (18)

when |kρ| � 1, |kρ ′| � 1 and

〈ρ|gc(Z)|f 〉 7−→ µ

ik
ρ

∫ ∞
0

dx x1+iη exp(ikρ|1− x|)f (xρ,�ρ) (19)
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if |kρ| � 1. f (ρ) is a smooth function, significantly different from zero only at large
distancesρ. Using standard asymptotic methods, we find the asymptotic expression for
equation (19):

〈ρ|gc(Z)|f 〉 7−→ 2µ

k2
f (ρ) (20)

which is valid when|kρ| � 1. Equation (20) implies that

〈ρ|gc(Z)|ρ′〉 7−→ 2µ

k2
δ(ρ− ρ′) = 1

Z δ(ρ− ρ
′) (21)

when both|kρ| � 1 and|kρ ′| � 1.
The result obtained opens the possibility to calculate the matrix elements of the

polarization potential〈f |Vpol(Z)|f ′〉 with functionsf (ρ) and f ′(ρ) smoothly vanishing
at small distances. The kernel ofVpol(Z) is obtained in this case by substitution of
equation (21) into equation (14). In the dipole approximation forWα we find that

〈ρ|U(2)
mm′ |ρ′〉 =

1

ρ2ρ
′2

∫ ∞
−∞

dε

−2iπ

∫
dr
∫

dr′ rr ′C2ψ∗(r) cos(r,ρ)θ̃(ρ − r)

×〈r|ĝα(ε + i0)|r′〉 cos(r′,ρ′)θ̃(ρ ′ − r ′)ψm′(r′)〈ρ|gcα(Z − ε)|ρ′〉. (22)

The terms containing the step functionsθ̃ (r−ρ) or θ̃ (r ′−ρ ′) (r being the relative coordinate
in the pairα) are exponentially small and we replace the sharp cut-offθ̃ (ρ−r) by the smooth
one(1+exp((r−ρ)/a))−1. Assuming that the Hamiltonian̄Hα is analytical under complex
scaling [13, 16, 17] (and thus the functionψm(r) = (1 + exp((r − ρ)/a))−1φm(r) is an
analytical vector [16]), we can rewrite equation (22) as

〈ρ|U(2)
mm′ |ρ′〉 =

1

ρ2ρ
′2C

2
∫ ∞
−∞

dε

−2iπ

∫
dr
∫

dr′ rr ′φ∗m(e
θ∗r) cos(r,ρ)〈r|ĝθα(ε + i0)|r′〉

× cos(r′,ρ′)φm′(r′)〈ρ|gcα(Z − ε)|ρ′〉 (23)

where we have used the second Balslev–Combes theorem [15, 16]

〈9m|ĝ(ε + i0)|9m′ 〉 = 〈9m(θ∗)|ĝθα(ε + i0)|9m(θ)〉 (24)

andθ is a complex scaling parameter, not to be confused with the step functionθ̃ (x). The
constantC in equations (22) and (23) is defined by the expression

C = Q3
Q2m1−Q1m2

m1+m2
. (25)

Inserting the spectral representation for theĝα
θ
(ε + i0) into equation (23) and assuming

for simplicity that the HamiltonianQHαQ does not have a discrete spectrum, we reduce
equation (23) to the form∫

dqα |ψθ
α(q)〉〈ψθ∗

α (qα)| × 〈ρ|gc
(
Z − e−2θ q

2
α

2µα

)
|ρ̄ ′〉

+
∑
|ψi(θ)〉〈ψi(θ∗)| × 〈ρ|gc(Z − λi)|ρ′〉 (26)

where
∫

dqα|ψθ
α(q)〉〈ψθ∗

α (qα)| is the spectral projection operator onto the continuous
spectrum ofQH̄αQ and where|ψi(θ)〉 is the resonant wavefunction for the pairα, i.e.

H̄α|ψi(θ)〉 = λi |ψi(θ)〉. (27)

Since

|kθ | =
∣∣∣∣∣
(

2µα

(
Z − e−2θ q

2
α

2µ

))1/2
∣∣∣∣∣ 6= 0 (28)
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whereZ 6= 0 for arbitraryqα(Im θ > 0) and whereµα = (m1+m2)m3
m1+m2+m3

is the reduced mass of
the pairα plus the third particle, the result in equation (21) can be applied in equation (23).
Using the limiting procedureθ 7→ 0 in the resulting expression, we find

〈ρ|U(2)
mm′ |ρ′〉 = δ(ρ− ρ′)

C2

ρ4

∫
dr
∫

dr′ ψ∗m(r)rθ̃(ρ − r)

× cos(r,ρ)〈r|ĝα(Z)|r′〉r ′θ̃ (ρ ′ − r ′) cos(r′,ρ′)ψm′(r′). (29)

If we neglect the exponentially small corrections again, the final expression for the
polarization potential follows in the form

〈ρ|V mm′pol (Z)|ρ′〉 = 〈ρ|U(2)
mm′ |ρ′〉 = −

γ δ(ρ− ρ′)
ρ4

(30)

where

γ = −C2
∫

dr
∫

dr′ ψ∗m(r)r cos(r,ρ)〈r|ĝα(Z)|r′〉r ′ cos(r′,ρ′)ψm′(r′). (31)

The result in equation (30) is valid for allZ 6= 0 andZ /∈ σd(H0α+Vα) with the exception of
the eigenvalue−κ2

α under consideration. Generally, for the negative energies of the system
(particularly at the energies between the ground and the first excited state) the expressions in
equation (30) coincide with the well known expression for the polarization potential in the
adiabatic approximation. The approach developed here allows the validity of equation (30)
to be extended for arbitrary energies,E. The exceptions are the threshold energies of the
HamiltonianQHαQ and the region of relative distancesρ for which (2µα|δ|)1/2ρ � 1,
whereδ is the distance fromE to the nearest threshold.

As mentioned above, the result obtained relates to the properties of the kernel
〈ρ|Vpol(Z)|ρ′〉. If the momentap and p′ obey the inequalityp, p′ � |√2µαE| it is
easy to see that this result extends to the momentum space matrix elements〈p|Vpol(Z)|p′〉
which describe the properties of the long-range part of the operatorU

(2)
mm′(Z).

3. Applications

3.1. Deuteron–nucleus scattering

As a first example we derive the expression for the polarization potential corresponding to the
low-energy scattering of the deuteron by the nucleus with chargeQ = Q3. Assuming that
the nucleon–nucleon forces are described by a separable potential with the form factor in the
Yukawa form (Yamaguchi potential) and using for simplicity the zero-range approximation
we obtain

〈ρ|Vpol(Z)|ρ′〉 = −γ δ(ρ− ρ
′)

ρ4
(32)

where

γ = Q2

64

MN

β4 2F1

(
1,

5

2
; 5; E

c
d + i0

|εb|
)
. (33)

Ecd is the energy of the system (in the centre-of-mass),εb = − β2

MN
is the bound energy of

the deuteron of reduced massMN and 2F1 is the hypergeometric function of the form

2F1

(
1,

5

2
; 5; z

)
= 4!16

9z4

[
(1− z)3/2− 1+ 3

2
z− 3

8
z2− 1

16
z3

]
. (34)

In the range of low energies, which is our current interest, one may assumeEcd
∼= 0, and

the result obtained coincides with that obtained in [3].
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3.2. Ion–hydrogen scattering

As a second example we calculate the polarization potential constant for the scattering of
an ion of chargeQ = Q3 by the hydrogen atom. Using the dipole approximation for the
potentialW(ρ) we obtain

γ = − 4
3Q

2I (35)

where

I = −
∫ ∞

0
dr
∫ ∞

0
dr ′ e−β(r+r

′)r2r
′2g`=1

c (r, r ′,Z) (36)

andβ = 1 in case of the hydrogen ion.
To calculate the integral in equation (36) we use the following representation for the

two-body Coulomb Green function [17]

gc(r, r
′,Z) = 4iq

∞∑
n=1

n−1∑
`=0

2`+ 1

4π
P`(r, r

′)
(n− `− 1)!

(n+ `)!
1

n+ iη
eiq(r+r ′)(−2iqr)`(−2iqr ′)`

×L2`+1
n−`−1(−2iqr)L2`+1

n−`−1(−2iqr ′) (37)

whereL`n(x) is the Laguerre polynomial andq = (2Z)1/2. Thus

I = 2(−2iq)3
(

d2A

dp1dp2

)
p1=p2=β−iq

(38)

where

A =
∞∑
n=0

1

n+ 2+ iη
fn(p1)fn(p2)

n!

(n+ 3)3
(39)

and

fn(p) =
∫ ∞

0
dr e−prr3L3

n(−2iqr) = (n+ 3)!

n!

xn

p4
(40)

with (
x = p + 2iq

p

)
. (41)

Using the formula

∞∑
n=0

1

n+ v x
n = 1

v
2F1(1, v; v + 1; x) (42)

we obtain

A = 1

2+ iη

1

p4
1p

4
2

d3

dx3
x3

2F1(1, 2+ iη; 3+ iη; x) (43)

wherex = x1x2. This yields

A = 1

2+ iη

6

p4
1p

4
2

2F1(4, 2+ iη; 3+ η; x). (44)
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Figure 1. The dependence on energy of the hydrogen atom polarization constant in atomic
units.

Substituting this expression forA into equation (38) we obtain the ion-on-hydrogen atom
polarization potential constant

γ = 27iq3Q2

2+ iη

[
16

p10 2F1(2+ iη, 4; 3+ iη; x)

+
(

4

p12
c2− 32

p12
(p − c)c

)
2+ iη

3+ iη
2F1(3+ iη, 5; 4+ iη; x)

+ 1

p14
(p − c)2c2 20(2+ iη)

4+ iη
2F1(4+ iη, 6; 5+ iη; x)

]
(45)

with η = − i
q

, p = 1− iq, x = 1+iq
1−iq , c = −2iq.

Sinceq = (2Ec − 1)1/2 whereEc is the relative collision energy, the low-energy limit
yields q ∼= i and x ∼= 0 and henceγ ∼= 9

4Q
2, what is to be expected [2] from the known

polarizability of atomic hydrogen. To illustrate the energy dependence of the polarization
constant when the collision energy rises from zero we calculateγ in the energy range
0 6 Ec < 3 eV. Our result is shown in figure 1 showing a relative change ofγ of about
30%.

We also derive the representation for the hydrogen atom–ion polarization potential at
asymptoticaly large distances,ρ � 1, which can be written in the form

V (ρ) = −
∞∑
`=1

γ`

ρ2`+2
(46)

where

γ` = 8

2`+ 1
(−2iq)2`+1Q2

(
d2A`

dp1dp2

)
p1=p2=1−iq

(47)
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and

A` = (2`+ 1)!

`+ 1+ iη

1

(p1p2)2`+2 2F1(2`+ 2, `+ 1+ iη; `+ 2+ iη; x1x2). (48)

We note that this result does not coincide with the well known expansion of polarization
potential in [1]. The latter concerns high energies while our result is derived for low energies
and is valid in the limit thek→ 0.

3.3. Ion–atom and atom–atom scattering

As a third example we investigate the properties of the polarization potential at high energy
for ion–arbitrary atom and atom–atom scattering. Using the expression in equation (12) for
the effective ion–atom or atom–atom potential

Veff = Vst+ Vpol (49)

whereVst is defined by equation (13) and the high-energy approximation for the polarization
potential

Vpol
∼= 〈φα|V αĜαV

α|φα〉 (50)

we obtain the representation of the elastic amplitude in the two-potential approximation
form [9]:

tel(p,p0) = tst(p,p0)+ 〈p(−)|Vpol|p(+)0 〉. (51)

The amplitudetst(p,p0) in equation (51) corresponds to the scattering on the potentialVst

while the states|p(±)〉 are the distorted waves for this potential. At reasonably high energies
we can use the eikonal approximation, which yields

〈ρ|p(±)〉 = (2π)−3/2 exp

(
ipρ+ µα

ip

∫ z

∓∞
dz′ Vst(b, z

′)
)

(52)

and

tst(p,p0) = tst(q) = − ip

(2π)3µα

∫
db eiqb

(
1− exp

(
µα

ip

∫ ∞
−∞

dz Vst(b, z)

))
(53)

whereq = p0− p andb are the momentum transfer and impact parameter, respectively.
Using the optical theorem and expanding the total reaction cross section as a power

series in the parameter1
v
= µα

p0
we find that the leading term of this power series has the

form

σtot = µ2
α

p2
0

∫
db

(∫
dr
∫ ∞
−∞

dz |φα(r)|2V α(r, b)
)
− 2(2π)3µα

p0
Im 〈p0|Vpol|p0〉. (54)

In particular, the contribution of the Born terms of order higher than the second one are
neglected intst(q), leading to equation (54).

Next, the spectral representation of the Green functionĜα(Z) is used to calculate the
contribution of the polarization potential into equation (54)

Ĝα(Z) =
∑∫
i 6=0

|ϕαi〉〈ϕαi |
Z − εαi − p̂2

α

2µα

(55)
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where {|ϕαi〉} is the complete set of target atom states,εαi is the energy of theith state,
ϕα0 = φα and εα0 = −κ2

α, as well as the eikonal approximation for the matrix elements

〈ρ|(E + i0− εαi − p̂2
α

2µα
)−1|ρ′〉. As a result we find that

σtot = µ2
α

p0

∑∫
i

1

pi
φ∗α(r)ϕαi(r)φα(r

′)ϕ∗αi(r
′)

×
∫

db
∫ ∞
−∞

dz e−i1izV α(b, z; r) ·
∫

db
∫ ∞
−∞

dz e−i1izV α(b, z; r′) (56)

wherepi =
√

2µα(E − εαi) and1i = p0− pi .
Particularly in the case of ion–atom scattering, the potentialV α has the form

V α(r,ρ) = −Qe2

( N∑
i=1

1

|ri − ρ| −
1

ρ

)
(57)

whereN is the number of electrons in the target atom. By using the integral representation
of the McDonald functionK0(z)

2K0(z) =
∫ ∞
−∞

dx
e−ixz

√
1+ x2

(58)

and neglecting the difference betweenp0 andpi in the denominators of equation (56) we
obtain

σtot = 4µ2
α

p2
0

∑∫
i

∫
dr
∫

dr′ φ∗α(r)ϕαi(r)φα(r
′)ϕ∗αi(r

′)
∫

db

(
N2K2

0(1ib)−NK0(1ib)

×
( N∑
j=1

K0(1i |b− bj |)+
N∑
k=1

K0(1i |b− b′k|)
)

+
N∑
j=1

N∑
k=1

K0(1i |b− bj |)K0(1i |b− b′k|)
)
. (59)

The limit 10 → 0 is implied in equation (59). To perform integration over the impact
parameterb we use the relations∫

dbK2
0(1b) =

π

1

∫
dbK0(1b)K0(1|b− b1|) = π

1
b1K1(1b1). (60)

From properties of the functionK1(z) of a small argument

K1(z) ∼ 1

z
+ z

2
ln
z

2
− z

4
(ψ(2)+ ψ(1)) z→ 0

whereψ(z) is theψ-function, we obtain

σtot = 4πQ2

v2
(a ln 2v + b) (61)
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where the constantsa andb are defined by relations:

a = N
∫

db ρ(b)b2−N(N − 1)
∫

db1

∫
db2 f (b1, b2)b1b2

b = 1
2N

2(ψ(2)+ ψ(1))
∫

db ρ(b)b2−N
∫

db ρ(b)b2 ln b

− 1
2N(N − 1)

∫
db1

∫
db2 f (b1, b2)|b1− b2|2 ln |b1− b2|

+N2
∑∫
i 6=0

ln εαi

∫
db1

∫
db2 ρ0i (b1)ρ

∗
0i (b2)|b1− b2|2

(62)

and

ρ(b1) =
∫ ∞
−∞

dz1

∫
dr2 . . .

∫
drN |φα(r1, . . . , rN)|2

f (b1, b2) =
∫ ∞
−∞

dz1

∫ ∞
−∞

dz2

∫
dr3 . . .

∫
drN |φα(r1, . . . , rN)|2

ρ0i (b1) =
∫ ∞
−∞

dz1

∫
dr2 . . .

∫
drN φ

∗
α(r1, . . . , rN)ϕαi(r1, . . . , rN).

(63)

The constanta determines the dipole momentum of the target atom

a = 〈φα|
( N∑
j=1

bj

)2

|φα〉 = 〈φα|d2
⊥|φα〉 (64)

whered⊥ is the target dipole momentum projection onto the plane perpendicular to the
vectorp0. The constantb accounts for the dipole and quadrupole transitions in the target
atom.

In the special case of the hydrogen atom these yield

σtot = 8π

v2

(
ln 2v + 3

4
+ ln

1

1E

)
(65)

where

ln
1

1E
=
∑∫
i 6=0

Si ln εαi

Si =
∫

db1

∫
db2 ρ0i (b1)ρ

∗
0i (b2)|b1− b2|2.

(66)

It is interesting to note that the result in equation (61) can be also obtained by using the
following approximation for the Green function̂Gα(Z) in equation (55) [1]

Ĝα(Z) =
(
Z − ε̃ − p̂2

α

2µα

)−1

(I − |φα〉〈φα|) (67)

where the valuẽε is the average excitation energy of the atom. This yields

σtot = 4πQ2

v2

(
a ln

1

1
+ b′

)
(68)
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where 1 = p0 −
√
p2

0 − 2µα(κ2+ ε̃), the valuea has the same meaning as in the

formula (61) andb′ is obtained in the form

b′ = N2
∫

db ρ(b)b2

(
1

2
+ ψ(1)− ln

b

2

)
− 1

2
N(N − 1)

∫
db1

×
∫

db2 f (b1, b2)

(
1

2
+ ψ(1)− ln

|b1− b2|
2

)
. (69)

This result for σtot is a justification of the approximation for the Green function in
equation (67) as well as a direct method for calculation of the average excitation energyε̃.

3.4. Alternate derivation of scattering wavefunction

As our final example, we derive an expression for the scattering wavefunction|9(+)
α 〉 which

satisfies boundary conditions as given by the Lippmann–Schwinger equation

|9(+)
α 〉 = |φαp0〉 + Ĝα(E + i0)V α|9(+)

α 〉. (70)

Approximation of the channel Green function in the form equation (67) yields for the
solution of equation (70)

〈rρ|9(+)
α (p0)〉 = (2π)−3/2eip0ρφα(r)F (r,ρ). (71)

Therefore the functionF(r,ρ) satisfies the integral equation

F(r,ρ) = 1− µα
2π

∫
dρ′

eip0(z−z′)+ip|ρ−ρ′|

|ρ− ρ′| V α(r,ρ′)F (r,ρ′) (72)

with p = p0 − 1 =
√
p0− 2µα(κ2+ ε̃). The z-axis is chosen parallel to the vectorp0.

The kernel of equation (72) contains the large parameterp, so that we can apply asymptotic
methods to construct the solution of this equation. Application of the stationary phase
method results in the equation

F(z) = 1+ µα
ip

∫ ∞
−∞

dz′ eip0(z
′−z)+ip|z−z′|V α(z′)F (z′) (73)

where, for simplicity, we omit dependence on all variables with the exception of thez

coordinate. Neglecting the terms of orders higher thanp−1, this reduces to the expression

F(z) = 1+ µα
ip

∫ z

−∞
dz′ e−i1(z−z′)V α(z′)F (z′) (74)

which can be transformed into

F(z) = 1+ µα
ip

∫ z

−∞
dz′ e−i1(z−z′)V α(z′)e

µα
ip

∫ z
z′ dz

′′V α(z′′)
. (75)

This yields the elastic scattering amplitude in the form

tel(p,p0) = 〈pφα|V α|9(+)
α (p0)〉 = 1

(2π)3

∫
dρ eiqρ

∫
dr |φα(r)|2V α(r,ρ)

+µα
ip

1

(2π)3

∫
dr |φα(r)|2

∫
db
∫ ∞
−∞

dz
∫ z

−∞
dz′V α(r; b, z)V α(r; b, z′)

×e−i1(z−z′)e
µα
ip

∫ z
z′ dz

′′V α(r;b,z′′)
. (76)

At high energy, the representation given by equation (76) leads to the same result for
the reaction total cross section as that derived from the polarization potential approach.
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Therefore the representation in equations (71) and (75) of the scattering wavefunction
properly takes into account the effect of the polarization potential in distinction to the
traditional eikonal approximation, which can be obtained from (75) by neglecting the
value1. This fact explains why the elastic amplitude written within the framework of
the traditional eikonal approximation diverges in the forward direction [18].
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